Метод повышения эффективности рлс для обнаружения людей за оптически непрозрачными преградами. Радиоимпульсы с фазовой кодовой манипуляцией (ри с фкм) Сигналы с внутриимпульсной модуляцией

Подробности Опубликовано 02.10.2019

ЭБС «Лань» информирует о том, что за сентябрь 2019 года обновлены доступные нашему университету тематические коллекции в ЭБС «Лань»:
Инженерно-технические науки - Издательство «Лань» - 20

Надеемся, что новая коллекция литературы будет полезна в учебном процессе.

Тестовый доступ к коллекции «ПожКнига» в ЭБС «Лань»

Подробности Опубликовано 01.10.2019

Уважаемые читатели! C 01.10.2019 г. по 31.10.2019 г. нашему университету предоставлен бесплатный тестовый доступ к новой издательской коллекции в ЭБС «Лань»:
«Инженерно-технические науки» издательства «ПожКнига» .
Издательство «ПожКнига» является самостоятельным подразделением Университета комплексных систем безопасности и инженерного обеспечения (г. Москва). Специализация издательства: подготовка и издание учебно-справочной литературы по пожарной безопасности (безопасность предприятий, нормативно-техническое обеспечение работников системы комплексной безопасности, пожарного надзора, пожарная техника).

Успешное окончание выдачи литературы!

Подробности Опубликовано 26.09.2019

Уважаемые читатели! Мы рады вам сообщить об успешном окончании выдачи литературы студентам первого курса. С 1 октября читальный зал открытого доступа №1 будет работать по обычному графику c 10:00 до 19:00.
С 1 октября студенты, не получившие литературу со своими группами, приглашаются в отделы учебной литературы (помещения 1239, 1248) и отдел социально-экономической литературы (помещение 5512) для получения необходимой литературы в соответствии с установленными правилами пользования библиотекой.
Фотографирование на читательские билеты осуществляется в читальном зале №1 по расписанию: вторник, четверг с 13:00 до 18:30 (перерыв с 15:00 до 16:30).

27 сентября - санитарный день (подписываются обходные листы).

Оформление читательских билетов

Подробности Опубликовано 19.09.2019

Уважаемые студенты и сотрудники университета! 20.09.2019 и 23.09.2019 с 11:00 до 16:00 (перерыв c 14:20 до 14:40) приглашаем всех желающих, в т.ч. студентов первого курса, не успевших сфотографироваться со своими группами, для оформления читательского билета в читальный зал №1 библиотеки (пом. 1201).
С 24.09.2019 возобновляется фотографирование на читательские билеты по обычному графику: вторник и четверг с 13:00 до 18:30 (перерыв с 15:00 до 16:30).

Для оформления читательского билета необходимо при себе иметь: студентам - продлённый студенческий билет, сотрудникам - пропуск в университет или паспорт.

ФКМ радиоимпульсы характеризуются скачкообразным изменением фазы внутри импульса по определенному закону, например (рис. 1.66):

– код трехэлементного сигнала

– закон изменения фазы

или семиэлементный сигнал (рис. 1.67):

Таким образом, можно сделать выводы:

· АЧС сигналов с ЛЧМ является сплошным.

· Огибающая АЧС определяется формой огибающей сигнала.

· Максимальное значение АЧС определяется энергией сигнала, которая в свою очередь, прямопропорциональна амплитуде и длительности сигнала.

· Ширина спектра равна где девиация частоты и не зависит от длительности сигнала.

· База сигнала (коэффициент широкополостности) может быть n >>1. Поэтому ЛЧМ сигналы называют широкополосными.

ФКМ радиоимпульсы длительностью представляют собой совокупность следующих друг за другом без интервалов элементарных радиоимпульсов, длительность каждого из них одинакова и равна . Амплитуды и частоты элементарных импульсов одинаковы, а начальные фазы могут отличаться на (или какое-либо другое значение). Закон (код) чередования начальных фаз определяется назначением сигнала. Для ФКМ радиоимпульсов, используемых в радиолокации разработаны соответствующие коды, например:

1, +1, -1 - трехэлементные коды

- два варианта четырехэлементного кода

1 +1 +1, -1, -1, +1, -2 - семиэлементный код

Спектральную плотность кодированных импульсов определяют, используя свойство аддитивности преобразований Фурье, в виде суммы спектральных плотностей элементарных радиоимпульсов.

В настоящее время остаются актуальными в радиолокации задача разрешения, а в системах передачи информации - задача различения сигналов.

Для решения этих задач можно использовать ФКМ сигналы, кодированные ансамблями ортогональных функций, имеющих, как известно, нулевую взаимную корреляцию.

Для разрешения сигналов в радиолокации можно использовать пачечный сигнал, каждый импульс которого кодирован одной из строк ортогональной матрицы, например матрицы Виленкина-Крестенсона или Уолша-Адамара. Данные сигналы имеют хорошие корреляционные характеристики, что позволяет использовать их для вышеупомянутых задач. Для различения сигналов в системах передачи данных можно использовать такой же сигнал со скважностью равной единице.

Матрицу Виленкина-Крестенсона при этом можно использовать для формирования полифазного (p -фазного) ФКМ сигнала, а матрицу Уолша-Адамара, как частный случай матрицы Виленкина-Крестенсона для числа фаз равного двум, - для формирования бифазного сигнала.

Полифазные сигналы, как известно, обладают высокой помехоустойчивостью, структурной скрытностью и относительно малым уровнем боковых лепестков автокорреляционной функции. Однако для обработки таких сигналов необходимо затрачивать большее количество алгебраических операций сложения и умножения из-за наличия реальной и мнимой частей отсчетов сигнала, что приводит к увеличению времени обработки.

Задачи различения и разрешения могут усугубляться априорно неизвестным доплеровским смещением несущей частоты из-за относительного движения источника информации и абонента или РЛС и цели, что также затрудняет обработку сигналов в реальном масштабе времени из-за наличия дополнительных доплеровских каналов обработки.

Для обработки вышеупомянутых сигналов, имеющих доплеровскую добавку частоты, предлагается использовать устройство, которое состоит из входного регистра, процессора дискретного преобразования, блока перекрестных связей и набора одинаковых блоков формирования АКФ сигнала, представляющих собой последовательно соединенные регистры сдвига.

Если в качестве матрицы-базиса взять ортогональную матрицу Виленкина-Крестенсона для обработки полифазного пачечного сигнала, то дискретное преобразование перейдет в дискретное преобразование Виленкина-Крестенсона-Фурье.

Т.к. матрицу Виленкина-Крестенсона можно факторизировать с помощью алгоритма Гуда, то дискретное преобразование Виленкина-Крестенсона-Фурье можно свести к быстрому преобразованию Виленкина-Крестенсона-Фурье.

Если в качестве матрицы-базиса взять ортогональную матрицу Уолша-Адамара - частный случай матрицы Виленкина-Крестенсона для обработки бифазного пачечного сигнала, то дискретное преобразование перейдет в дискретное преобразование Уолша-Фурье, которое путем факторизации можно свести к быстрому преобразованию Уолша-Фурье.

В отличие от спектра колокольной пачки спектры прямоугольных пачек обладают другой формой лепестка, а именно .

Спектры пачек прямоугольных радиоимпульсов

· Форма арок АЧС определяется формой АЧС импульсов.

· Форма лепестков АЧС определяется формой АЧС пачки.

· Спектры пачек видеоимпульсов расположены на оси частот в окрестности нижних частот, а спектры пачек радиоимпульсов - в окрестности несущей частоты.

· Численное значение спектральной плотности пачек импульсов определяется её энергией, которая, в свою очередь, прямопропорциональна амплетуде импульсов в пачке длительности импульса и количеству импульсов в пачке К (длительности пачки) и обратнопропорциональна периоду следования импульсов

· При количестве импульсов в пачке база сигнала (коэффициент широкополостности) =

1.5.2. Сигналы с внутриимпульсной модуляцией

В теории радиолокации доказано, что для увеличения дальности действия РЛС необходимо увеличивать длительность зондирующих импульсов, а для улучшения разрешающей способности - расширять спектр этих импульсов.

Радиосигналы без внутриимпульсной модуляции (“гладкие”), применяемые в качестве зондирующих, не могут одновременно удовлетворить этим требованиям, т.к. их длительность и ширина спектра обратно пропорциональны друг другу.

Поэтому в настоящее время в радиолокации все большее применение находят зондирующие радиоимпульсы с внутриимпульсной модуляцией.

Радиоимпульс с линейной частотной модуляцией

Аналитическое выражение такого радиосигнала будет иметь вид:

где - амплитуда радиоимпульса,

Длительность импульса,

Средняя несущая частота,

скорость изменения частоты;

Закон изменения частоты.

Закон изменения частоты.

График радиосигнала с ЛЧМ и закон изменения частоты сигнала внутри импульса (изображен на рисунке 1.63 радиоимпульс с нарастающей во времени частотой) приведены на рисунке 1.63

Амплитудно-частотный спектр такого радиоимпульса имеет примерно прямоугольную форму (рис. 1.64)

Для сравнения ниже показан АЧС одиночного прямоугольного радиоимпульса без внутри-импульсной частотной модуляции. В связи с тем, что длительность радиоимпульса с ЛЧМ велика, его можно условно разбить на совокупность радиоимпульсов без ЛЧМ, частоты которых изменяются по ступенчатому закону, показанному на рисунке 1.65

Спектры каждого из радиоимпульсов без JIЧM будут находиться каждый на своей частоте: .

сигнала. Нетрудно показать, что форма АЧС будет совпадать с формой исходного сигнала.

Фазо-кодо-манипулированные импульсы (ФКМ)

ФКМ радиоимпульсы характеризуются скачкообразным изменением фазы внутри импульса по определенному закону, например (рис. 1.66):

код трехэлементного сигнала

закон изменения фазы

трехэлементный сигнал

или семиэлементный сигнал (рис. 1.67)

Таким образом, можно сделать выводы:

· АЧС сигналов с ЛЧМ является сплошным.

· Огибающая АЧС определяется формой огибающей сигнала.

· Максимальное значение АЧС определяется энергией сигнала, которая в свою очередь, прямопропорциональна амплитуде и длительности сигнала.

· Ширина спектра равна где девиация частоты и не зависит от длительности сигнала.

· База сигнала (коэффициент широкополостности) может быть n >>1. Поэтому ЛЧМ сигналы называют широкополосными.

ФКМ радиоимпульсы длительностью представляют собой совокупность следующих друг за другом без интервалов элементарных радиоимпульсов, длительность каждого из них одинакова и равна . Амплитуды и частоты элементарных импульсов одинаковы, а начальные фазы могут отличаться на (или какое-либо другое значение). Закон (код) чередования начальных фаз определяется назначением сигнала. Для ФКМ радиоимпульсов, используемых в радиолокации разработаны соответствующие коды, например:

1, +1, -1 - трехэлементные коды

- два варианта четырехэлементного кода

1 +1 +1, -1, -1, +1, -2 - семиэлементный код

Спектральную плотность кодированных импульсов определяют, используя свойство аддитивности преобразований Фурье, в виде суммы спектральных плотностей элементарных радиоимпульсов.

Графики АЧС для трехэлементного и семиэлементного импульсов приведены на рисунке 1.68

Как видно из приведенных рисунков, ширина спектра ФКМ радиосигналов определяется длительностью элементарного радиоимпульса

или .

Коэффициент широкополостности , где N -количество элементарных радиоимпульсов.

2. Анализ процессов временными методами. Общие сведения о переходных процессах в электрических цепях и классическом методе их анализа

2.1. Понятие о переходном режиме. Законы коммутации и начальные условия

Процессы в электрических цепях могут быть стационарными и нестационарными (переходными). Переходным, процессом в электрической цепи называют такой процесс, при котором токи и напряжения не являются постоянными или периодическими функциями времени. Переходные процессы могут возникать в цепях, содержащих реактивные элементы при подключении или отключении источников энергии, скачкообразном изменении схемы или параметров входящих элементов (коммутации), а также при прохождении сигналов через цепи. На схемах коммутацию обозначают в виде ключа (рис. 2.1), предполагается, что коммутация происходит мгновенно. Момент коммутации условно принимают за начало отсчета времени. В цепях, не содержащих энергоёмких элементов L и С при коммутациях переходные

процессы отсутствуют. В цепях с энергоёмкими элементами переходные процессы продолжаются некоторое время, т.к. энергия запасенная конденсатором или индуктивностью не может изменяться скачком, т.к. это потребовало бы источника энергии бесконечной мощности . В связи с этим, напряжение на конденсаторе и ток через индуктивность скачком измениться не могут. Обозначая