Вирусы относятся к живым организмам так как. Вирусы. Строгие постулаты Коха

Доводы за то, что они живые:

  • Молекулярная организация такая же, как у клетки живого организма: НК, белки, мембраны. С молекулярной точки зрения = это нормальный вариант жизни. Внутри живых объектов находят нуклеотидные последовательности сходные с нуклеотидными последовательностями вирусов.
  • Вирусы имеют почти все свойства живого кроме развития.

Доводы за то, что они неживые:

  • Не имеют клеточного строения
  • Если поместить вирус под микроскоп и наблюдать за ним, то ничего не происходит. Для того, чтобы оно «начало жить», его нужно ввести в клетку. НО! Клетка – окружающая среда вируса. Если поместить живой организм в вакуум, то он умрет. Точно так же и вирус, для него воздушная среда – вакуум. Сухое семя растения может тысячелетиями лежать не проявляя свойств живого, до тех пор, пока не попадет в воду, замерзшая во льду лягушка, высохший в коконе чешуйчатник, всех можно оживить, поместив в подходящую среду, как и вирус.

Признак живого – большая степень самоупорядоченности. Матричный синтез – высшая степень упорядоченности, следовательно вирусы – живые. Однако наиболее просто устроенные вирусы – это молекулы ДНК, если вирусы живые, то и ДНК – живое.

Главный смысл жизни – продолжение жизни! Продолжение жизни – воспроизведение генетической информации. В эту схему хорошо укладывается то, что ДНК – живая. Некоторые транспозоны способны воспроизводиться по принципу репликации ДНК (ДНК – транскрипция). Смысл существованья транспозона вообще – воспроизведение отдельных участков генетической информации, причем каждый участок сам по себе. Все это привело к возникновению Selfish DNA – эгоистичная ДНК. ДНК способно к интенсивному воспроизведению; ДНК в ходе эволюции выработало такую среду, чтобы существовать – КЛЕТКА .

Итог: если принять, что вирусы живые то – клеточная теория живого отвергается; если вирусы живые, то и ДНК – живая; все более сложные структуры (кроме ДНК) имеют лишь одну цель – способствовать воспроизведению ДНК. В ходе эволюции создается клетка и ДНК «поняла», что это хорошо. Потом хорошо бы разделить на компартменты – возникли эукариоты. Хорошо бы рекомбинироваться – половое размножение. Потом многоклеточные существа. Среды обитания ДНК приспосабливались к окружающей среде, т. к. взаимоотношения с окружающей средой очень сложные, то возник разум. Следовательно, человек живет лишь для воспроизведения собственной генетической информации.

Выдвинута в 60 годы. Некоторые вирусы способны инфицировать клетку в виде голой ДНК, следовательно, основа жизни – это ДНК, следовательно, ДНК – живая. Доводы за эту концепцию:

  1. Существование вирусов
  2. В клетках разных живых организмов есть нуклеотидные последовательности, не предназначенные ни для чего, кроме своего воспроизведения – транспозоны, они содержат генетическую информацию, которая отвечает за перемещение транспозона. Есть 2 типа транспозонов:
  • Транспозоны 1 класса, ретротранспозоны. Ретротранспозонымобильные генетические элементы. Могут легко менять последовательность генетической информации. Перемещаются по геному путём обратной транскрипции с их РНК. Они мигрируют, при этом исходная копия остается на месте, а другая интегрируется в другое место. Внутренняя область очень похожа на генетический материал ретровирусов, но без области, кодирующей белок капсида. Ретровирусы – идет метод обратной транскрипции (ДНК по РНК). Сначала были ретровирусы. Они были в клетках и со временем утратили капсид, став транспозонами. Другая точка зрения – сначала были транспозоны. Но со временем по каким-то причинам появился капсид, позволяющий выйти транспозонам из клетки в виде ретровирусов.
  • ДНК-транспозоны, вырезаемые белками и переносимые ими в другое место, имеют только функцию самораспространения.
  1. ДНК – живой объект, который строит вокруг себя подходящую среду – клетку. ДНК отслеживает процессы размножения ДНК без размножения организма, пример бесплодные муравьи.
  2. Важно, насколько эффективно воспроизводится ДНК, судьба организма не важна.
  3. Концепция Вейсмана: в организме высшего животного можно выделить 2 типа структур:
  • Зародышевый путь – более ценный, от клеток эмбриона к репродуктивным клеткам
  • Сома – все остальные клетки, с генетической информацией можно делать что угодно

У аскариды клетки сомы выбрасывается множество фрагментов ДНК – диминуция ДНК.

Информация – это неоднородность пространства, созданная специально. Вирусы обладают генетической информацией, которая устроена так же как и у других живых существ.

У вирусов

Нет Есть Нет

Биология развития

Детерминированное дробление – дробление, которое начинает быть видным очень рано. Наиболее яркий пример: нематоды. У них можно до клеток просчитать, сколько их в каждом сегменте (считают ядра).

Caenorhabditis ebgans (нематода). У взрослой особи количество соматических ядер – 959. Если на одно меньше или больше – мутант по развитию. Для каждой клетки определена судьба. Некоторые клетки, образовавшиеся из первых, должны умереть. Это явление получило название апоптоз . У человека апоптоз проявляется как разделение кисти (лопаточка на ранних стадиях) на пальцы. Некоторые клетки отмирают, что позволяет образовываться пальцам.

У млекопитающих детерминация намного слабее, есть стволовые клетки, но, получив специализацию, они уже не могут вернуться обратно, это называется терминальная дифференцировка .

Экология

Экология изучает взаимоотношение живых организмов с окружающей средой. Любые трофические отношения состоят из элементарных частей. Центральным звеном любых экологических отношений являются разнообразные биологические ответы – это система адекватных реакций организма на определенный внешний или внутренний сигнал.

Биология – наука о жизни. Не известно, кто впервые ввел этот термин в науку. Считают, что это понятие ввели независимо друг от друга два ученых (один из них Ламарк). Применяли это понятие и до Ламарка, например, Линней, но, скорее всего, в другом значение.

Каждую науку можно раздробить на более «мелкие» (узкоспециализированные). На пересечение строк и столбцов получаем реально существующую науку.

Есть науки, которые в этот способ классификации не вписываются. Науки, возникшие на границе естественных наук.

В какой-то степени эти науки синтетические.

Науки, которые изучают все многообразие сразу, используя методы всех наук: молекулярная биология, эволюционное учение, систематика – описание существующего и существовавшего многообразия видов и их распределение в системе в зависимости от их филогении. Эволюционное учение, систематика – это синтетические наука.

Согласно Львову, “организм - некая независимая единица интегрированных и взаимосвязанных структур и функций”. У простейших, то есть у одноклеточных именно клетка является независимой единицей, иными словами, организмом. И клеточные организмы - митохондрии, хромосомы и хлоропласты - это не организмы, ибо они не являются независимыми. Получается, что если следовать определению, данным Львовым, вирусы не являются организмами, так как не обладают независимостью: для выращивания и репликации генетического материала нужна живая клетка.

В то же время, у многоклеточных видов независимо от того, животные или растения, отдельные линии клеток не могут эволюционировать независимо друг от друга; следовательно, их клетки не являются организмами. Для того чтобы изменение было эволюционно значимым, оно должно быть передано новому поколению индивидуумов. В соответствии с этим рассуждением организм представляет собой элементарную единицу некоторого непрерывного ряда со своей индивидуальной эволюционной историей

И в то же время, можно рассматривать данную проблему с точки зрения другого определения: материал является живым если, будучи изолированным, он сохраняет свою специфическую конфигурацию так, что эта конфигурация может быть реинтегрирована, то есть вновь включена в цикл, в котором участвует генетическое вещество: это отождествляет жизнь с наличием независимого специфического самореплицирующегося способа организации. Специфическая последовательность оснований нуклеиновой кислоты того или иного гена может копироваться; ген - это некая часть запасов информации, которой располагает живой организм. В качестве теста на живое данное выше определение предлагает воспроизведение в различных клеточных линиях и в ряде поколей организмов. Вирус, согласно этому тесту, живой точно так же, как и любой другой фрагмент генетического материала, что его можно извлечь из клетки, вновь ввести в живую клетку и что при этом он будет копироваться в ней и станет хотя бы на некоторое время часть ее наследственного аппарата. При этом передача вирусного генома составляет основной смысл существования этих форм - результат их специализации в процессе отбора. Поэтому специализированность вирусов как переносчиков нуклеиновых кислот дает возможность считать вирусы “более живыми”, чем какие либо фрагменты генетического материала, и “более организмами”, чем любые клеточные органеллы, включая хромосомы и гены.

Строгие постулаты Коха

Каковы же те основные положения, сформулированные Робертом Кохом (1843-1910), которых должен придерживаться микробиолог при каждом обнаружении неизвестного возбудителя? Что может служить доказательством, что именно он является причиной данного инфекционного заболевания? Вот эти три критерия:

Неоднократное получение чистой культуры возбудителя, взятого из организма больного.

Возникновение точно такого же или сходного заболевания (как по характеру течения, так и по вызываемым им патологическим изменениям) при инфицировании здорового организма культурой предполагаемого возбудителя.

Появление в организме человека или животного после их заражения данным возбудителем всегда одних и тех же специфических защитных веществ. При контакте иммунной сыворотки крови с возбудителем из культуры последний должен терять свои патогенные свойства.

Для современной вирусологии характерно бурное развитие и широкое применение самых различных методик - как биологических (включая генетические), так и физико-химических.. Они используются при установлении новых, до сих пор еще неизвестных вирусов, и при изучении биологических свойств и строения уже обнаруженных видов.

Фундаментальные теоретические исследования дают обычно важные сведения, которые используются в медицине, в области диагностики или при глубоком анализе процессов вирусной инфекции. Введение новых действенных методов вирусологии связано, как правило, с выдающимися открытиями.

Так например, метод выращивания вирусов в развивающемся курином эмбрионе, впервые примененный А.М.Вудрофом и Е.Дж.Гудпэсчуром в 1931 году, был с исключительным успехом использован при изучении вируса гриппа.

Прогресс физико-химических методов, в частности метода центрифугирования, привел в 1935 году к возможности кристалмуации вируса табачной мозаики (ВТМ) из сока больных растений, а в последствии и к установлению входящих в его состав белков. Этим был дан первый толчок к изучению строения и биохимии вирусов.

В 1939 году А. В. Арден и Г. Руска впервые применили для изучения вирусов электронный микроскоп. Введение этого аппарата в практику означало исторический перелом в вирусологических исследованиях,поскольку появилась возможность увидеть - хотя в те годы еще и недостаточно четко - отдельные частицы вируса, вирионы.

В 1941 году Г.Херст установил, что вирус гриппа при известных условиях вызывает агглютинацию (склеивание и выпадение в осадок) красных кровяных телец (эритроцитов). Этим была положена основа для изучения взаимоотношений между поверхностными структурами вируса и эритроцитов, а также для разработки одного из наиболее эффективных методов диагностики.

Коренной перелом и вирусологических исследованиях произошел в 1949 г., когда Дж. Эндерсу, Т. Уэллеру и Ф. Роббинсу удалось размножить вирус полиомиелита в клетках кожи и мышц человеческого зародыша. Они добились разрастания кусочков ткани на искусственной питательной среде. Клеточные (тканевые) культуры были инфицированы вирусом полиомиелита, который до этого изучали исключительно на обезьянах и лишь очень редко на особом виде крыс.

Вирус в человеческих клетках, выращенных вне материнского организма, хорошо размножался и вызывал характерные патологические изменения. Метод культуры клеток (длительное сохранение и выращивание в искусственных питательных средах клеток, выделенных из организма человека и животных) был впоследствии усовершенствован и упрощен многими исследователями и стал, наконец, одним из наиболее важных и результативных для культивирования вирусов. Благодаря этому более доступному и дешевому методу появилась возможность получать вирусы в относительно чистом виде, чего нельзя было достичь в суспензиях из органов погибших животных. Введение нового метода означало несомненный прогресс не только в диагностике вирусных заболеваний, но и в получении прививочных вакцин. Он дал также неплохие результаты и в биологических и биохимических исследованиях вирусов.

В 1956 году удалось показать, что носителем инфекционности вируса является содержащаяся в нем нуклеиновая кислота. А в 1957 году А.Айзекс и Дж.Линдеман открыли интерферон, который позволил объяснить многие биологические явления, наблюдаемые в отношениях между вирусом и клеткой - хозяином или организмом - хозяином.

С. Бреннер и Д. Хорн ввели в технику электронной микроскопии метод негативного контрастного окрашивания, сделавший возможным изучение тонкого строения вирусов, в частности их структурных элементов (субъединиц).

В 1964 году уже упоминавшийся нами ранее американский вирусолог Гайдузек с сотрудниками доказал инфекционный характер ряда хронических заболеваний центральной нервной системы человека и животных. Он изучал недавно обнаруженные своеобразные вирусы, лишь в некоторых чертах схожие с ранее известными.

В то же время американский генетик Барух Бламберг обнаруживает (в процессе генетических исследований белков крови) антиген сывороточного гепатита (австралийский антиген), вещество, идентифицируемое при помощи серологических тестов. Этому антигену суждено было сыграть большую роль в вирусологических исследованиях гепатита.

В последние годы одним из крупнейших успехов вирусологии можно считать раскрытие некоторых молекулярно-биологических механизмов превращения нормальных клеток в опухолевые. Не меньшие успехи были достигнуты и в области изучения строения вирусов и их генетики.

Инфекционная единица

Наименьшее количество вируса, способное в данном опыте вызвать инфекцию, называется инфекционной единицей.

Для ее определения применяются обычно два метода. Первый основан на определении 50 %-ной летальной дозы, которая обозначается LD 50 (от лат. Letatis - смертельная, dosis - доза). Второй метод устанавливает число инфекционных единиц по числу бляшек, образовавшихся в культуре клеток.

Что, в сущности, представляет собой величина LD 50 и как она определяется? Исследуемый вирусный материал разводится в соответствии со снижающимися степенями концентрации, скажем кратными десяти: 1:10; 1:100; 1:1000 и т.д. Каждым из растворов с указанными концентрациями вируса инфицируют группу животных (десять индивидуумов) или культуру клеток в пробирках. Потом наблюдают гибель животных или изменения, происшедшие в культуре под влиянием вируса. Статистическим методом определяется степень концентрации, способная умертвить 50 % животных из числа зараженных исходным материалом. При использовании культуры клеток следует найти такую дозу вируса, которая производит губительное действие на 50 % инфицированных ею культур. В этом случае употребляется сокращение ЦПД 50 (цитопатическая доза). Иначе говоря, речь идет о такой дозе вируса, которая вызывает повреждение или гибель половины инфицированных ею культур.

Вирусы - существо или вещество?


В течение последних 100 лет ученые не раз меняли свое представление о природе вирусов, микроскопических переносчиков болезней.

Вначале вирусы считали ядовитыми веществами, затем - одной из форм жизни, потом - биохимическими соединениями. Сегодня предполагают, что они существуют между живым и неживым мирами и являются основными участниками эволюции.

В конце XIX века было установлено, что некоторые болезни, в том числе бешенство и ящур, вызывают частицы, похожие на бактерии, но гораздо более мелкие. Поскольку они имели биологическую природу и передавались от одной жертвы к другой, вызывая одинаковые симптомы, вирусы стали рассматривать как мельчайшие живые организмы, несущие генетическую информацию.

Низведение вирусов до уровня безжизненных химических объектов произошло после 1935 г., когда Уэнделл Стэнли (Wendell Stanley) впервые закристаллизовал вирус табачной мозаики. Обнаружилось, что кристаллы состоят из сложных биохимических компонентов и не обладают необходимым для биологических систем свойством - метаболической активностью. В 1946 г. ученый получил за эту работу Нобелевскую премию по химии, а не по физиологии или медицине.

Дальнейшие исследования Стэнли четко показали, что любой вирус состоит из нуклеиновой кислоты (ДНК или РНК), упакованной в белковую оболочку. Помимо защитных белков у некоторых из них есть специфические вирусные белки, участвующие в инфицировании клетки. Если судить о вирусах только по этому описанию, то они действительно больше похожи на химические субстанции, чем на живой организм. Но когда вирус проникает в клетку (после чего ее называют клеткой-хозяином), картина меняется. Он сбрасывает белковую оболочку и подчиняет себе весь клеточный аппарат, заставляя его синтезировать вирусные ДНК или РНК и вирусные белки в соответствии с инструкциями, записанными в его геном е. Далее происходит самосборка вируса из этих компонентов и появляется новая вирусная частица, готовая инфицировать другие клетки.

Такая схема заставила многих ученых по-новому взглянуть на вирусы. Их стали рассматривать как объекты, находящиеся на границе между живым и неживым мирами. По словам вирусологов Марка ван Регенмортеля (M.H.V. van Regenmortel) из Страсбургского университета во Франции и Брайана Махи (B.W. Mahy) из центров по профилактике заболеваний и контролю за их распространением, такой способ существования можно назвать "жизнью взаймы". Интересен следующий факт: при том, что долгое время биологи рассматривали вирус как "белковую коробку", наполненную химическими деталями, они использовали его способность к репликации в хозяйской клетке для изучения механизма кодирования белков. Современная молекулярная биология во многом обязана своими успехами информации, полученной при изучении вирусов.

Ученые кристаллизовали большинство клеточных компонентов (рибосомы, митохондрии, мембранные структуры, ДНК, белки) и сегодня рассматривают их либо как "химические машины", либо как материал, который эти машины используют или производят. Подобный взгляд на сложные химические структуры, обеспечивающие жизнедеятельность клетки, и стал причиной не слишком большой озабоченности молекулярных биологов статусом вирусов. Исследователи интересовались ими только как агентами, способными использовать клетки в своих целях или служить источником инфекции. Более сложная проблема, касающаяся вклада вирусов в эволюцию, остается для большинства ученых несущественной.

Быть или не быть?

Что означает слово "живой"? Большинство ученых сходятся во мнении, что помимо способности к самовоспроизведению живые организмы должны обладать и другими свойствами. Например, жизнь любого существа всегда ограничивается во времени - оно рождается и умирает. Кроме того, живые организмы имеют определенную степень автономии в биохимическом смысл е, т.е. в какой-то мере полагаются на собственные метаболические процессы, обеспечивающие их веществами и энерги ей, которые и поддерживают их существование.

Камень, равно как и капелька жидкости, в которой протекают метаболические процессы, но которая не содержит генетического материала и не способна к самовоспроизведению, несомненно, неживой объект. Бактерия же - живой организм, и хотя она состоит всего из одной клетки, она может вырабатывать энерги ю и синтезировать вещества, обеспечивающие ее существование и воспроизведение. Что в этом контекст е можно сказать о семени? Не всякое семя проявляет признаки жизни. Однако, находясь в покое, оно содержит тот потенциал , который получило от несомненно живой субстанции и который при определенных условиях может реализоваться. В то же время семя можно необратимо разрушить, и тогда потенциал останется нереализованным. В этом плане вирус больше напоминает семя, чем живую клетку: у него есть некие возможности, которые могут и не осуществиться, однако нет способности к автономному существованию.

Можно также рассматривать живое и как состояние, в которое при определенных условиях переходит система, состоящая из неживых компонентов, обладающих определенными свойствами. В качестве примера подобных сложных (эмерджентных) систем можно привести жизнь и сознание. Чтобы достичь соответствующего статуса, у них должен быть определенный уровень сложности. Так, нейрон (сам по себе или даже в составе нейрон ной сети) не обладает сознанием, для этого необходим мозг. Но и интактный мозг может быть живым в биологическом смысл е и в то же время не обеспечивать сознание. Точно так же ни клеточные, ни вирусные гены или белки сами по себе не служат живой субстанцией, а клетка, лишенная ядра, сходна с обезглавленным человеком, поскольку не имеет критического уровня сложности. Вирус тоже не способен достичь подобного уровня. Так что жизнь можно определить как некое сложное эмерджентное состояние, включающее такие же основополагающие "строительные блоки", которыми обладает и вирус. Если следовать такой логике, то вирусы, не являясь живыми объектами в строгом смысл е этого слова, все же не могут быть отнесены к инертным системам: они находятся на границе между живым и неживым.

РЕПЛИКАЦИЯ ВИРУСА
Вирусы, бесспорно, обладают свойством, присущим всем живым организмам, - способностью к воспроизведению, хотя и при непременном участии клетки-хозяина. На рисунке изображена репликация вируса, геном которого - двухцепочечная ДНК. Процесс репликации фагов (вирусов, инфицирующих бактерий, не содержащих ядра), РНК-вирусов и ретровирусов отличается от приведенного здесь лишь в деталях.

Вирусы и эволюция

У вирусов есть своя, очень длинная эволюционная история, восходящая к истокам возникновения одноклеточных организмов. Так, некоторые вирусные системы репарации, которые обеспечивают вырезание неправильных оснований из ДНК и ликвидацию повреждений, возникших под действием радикалов кислорода, и т.д., есть только у отдельных вирусов и существуют в неизменном виде миллиарды лет.

Исследователи не отрицают, что вирусы играли какую-то роль в эволюции. Но, считая их неживой материей, они ставят их в один ряд с такими факторами, как климатические условия. Такой фактор воздействовал на организмы, которые обладали изменяющимися, генетически детерминируемыми признаками, извне. Организмы, более стойкие к этому влиянию, успешно выживали, размножались и передавали свои гены следующим поколениям.

Однако в действительности вирусы воздействовали на генетический материал живых организмов не опосредованно, а самым что ни на есть прямым образом - они обменивались с ним своими ДНК и РНК, т.е. были игроками на биологическом поле. Большим сюрпризом для врачей и биологов-эволюционистов стало то, что большая часть вирусов оказалась вполне безобидными созданиями, не связанными ни с какими болезнями. Они спокойно дремлют внутри клеток-хозяев или используют их аппарат для своего неспешного воспроизведения без всякого ущерба для клетки. У таких вирусов есть масса ухищрений, позволяющих им избежать недремлющего ока иммунной системы клетки - для каждого этапа иммунного ответа у них заготовлен ген, который этот этап контролирует или видоизменяет в свою пользу.

Более того, в процессе совместного проживания клетки и вируса вирусный геном (ДНК или РНК) "колонизирует" геном хозяйской клетки, снабжая его все новыми и новыми генами, которые в итоге становятся неотъемлемой частью геном а данного вида организмов. Вирусы оказывают более быстрое и прямое действие на живые организмы, чем внешние факторы, которые осуществляют отбор генетических вариантов. Многочисленность популяций вирусов вкупе с их высокой скоростью репликации и высокой частотой мутаций превращает их в основной источник генетических инноваций, постоянно создающий новые гены. Какой-нибудь уникальный ген вирусного происхождения, путешествуя, переходит от одного организма к другому и вносит вклад в эволюционный процесс.

Клетка, у которой уничтожена ядерная ДНК, - настоящий "покойник": она лишена генетического материала с инструкциями о деятельности. Но вирус может использовать для своей репликации оставшиеся целыми компоненты клетки и цитоплазму. Он подчиняет себе клеточный аппарат и заставляет его использовать вирусные гены как источник инструкций для синтеза вирусных белков и репликации вирусного геном а. Уникальная способность вирусов развиваться в погибших клетках наиболее ярко проявляется, когда хозяевами служат одноклеточные организмы, прежде всего населяющие океаны. (Подавляющее число вирусов обитает на суше. По оценкам специалистов, в Мировом океане насчитывается не более 1030 вирусных частиц.)

Бактерии, фотосинтезирующие цианобактерии и водоросли, потенциал ьные хозяева морских вирусов, нередко погибают под действием ультрафиолетового излучения, которое разрушает их ДНК. При этом некоторые вирусы ("постояльцы" организмов) включают механизм синтеза ферментов, которые восстанавливают поврежденные молекулы хозяйской клетки и возвращают ее к жизни. Например, цианобактерии содержат фермент, который участвует в фотосинтезе, и под действием избыточного количества света иногда разрушается, что приводит к гибели клетки. И тогда вирусы под названием цианофаги "включают" синтез аналога бактериального фотосинтезирующего фермента, более устойчивого к УФ-излучению. Если такой вирус инфицирует только что погибшую клетку, фотосинтезирующий фермент может вернуть последнюю к жизни. Таким образом, вирус играет роль "генного реаниматора".

Избыточные дозы УФ-излучения могут привести к гибели и цианофагов, однако иногда им удается вернуться к жизни при помощи множественной репарации. Обычно в каждой хозяйской клетке присутствует несколько вирусов, и в случае их повреждения они могут собрать вирусный геном по частям. Различные части геном а способны служить поставщиками отдельных генов, которые совместно с другими генами восстановят функции геном а в полном объеме без создания целого вируса. Вирусы - единственные из всех живых организмов, способные, как птица Феникс, возрождаться из пепла.

По данным Международного консорциума по секвенированию геном а человека, от 113 до 223 генов, имеющихся у бактерий и человека, отсутствуют у таких хорошо изученных организмов, как дрожжи Sacharomyces cerevisiae, плодовая мушка Drosophila melanogaster и круглый червь Caenorhabditis elegans, которые находятся между двумя крайними линиями живых организмов. Одни ученые полагают, что дрожжи, плодовая мушка и круглый червь, появившиеся после бактерий, но до позвоночных, просто утратили соответствующие гены в какой-то момент своего эволюционного развития. Другие же считают, что гены были переданы человеку проникшими в его организм бактериями.

Вместе с коллегами из Института вакцин и генной терапии при Орегонском университете здравоохранения мы предполагаем, что существовал третий путь: исходно гены имели вирусное происхождение, но затем колонизировали представителей двух разных линий организмов, например бактерий и позвоночных. Ген, которым одарила человечество бактерия, мог быть передан двум упомянутым линиям вирусом.

Более того, мы уверены, что само клеточное ядро имеет вирусное происхождение. Появление ядра (структуры, имеющейся только у эукариот, в том числе у человека, и отсутствующей у прокариот, например у бактерий) нельзя объяснить постепенной адаптацией прокариотических организмов к изменяющимся условиям. Оно могло сформироваться на основе предсуществующей высокомолекулярной вирусной ДНК, построившей себе постоянное "жилище" внутри прокариотической клетки. Подтверждением этому служит факт, что ген ДНК-полимеразы (фермента, участвующего в репликации ДНК) фага Т4 (фагами называют вирусы, которые инфицируют бактерии) по своей нуклеотидной последовательности близок к генам ДНК-полимераз как эукариот, так и инфицирующих их вирусов. Кроме того, Патрик Фортере (Patrick Forterre) из Южного парижского университета, который исследовал ферменты, участвующие в репликации ДНК, пришел к выводу, что гены, детерминирующие их синтез у эукариот, имеют вирусное происхождение.

Вирус синего языка

Вирусы влияют абсолютно на все формы жизни на Земле, а часто и определяют их судьбу. При этом они тоже эволюционируют. Прямым доказательством служит появление новых вирусов, таких как вирус иммунодефицита человека (ВИЧ), вызывающий СПИД.

Вирусы постоянно видоизменяют границу между биологическим и биохимическим мирами. Чем дальше мы будем продвигаться в исследовании геном ов различных организмов, тем больше будем обнаруживать свидетельств присутствия в них генов из динамичного, очень древнего пула. Лауреат Нобелевской премии Сальвадор Лурия (Salvador Luria) в 1969 г. так говорил о влиянии вирусов на эволюцию: "Возможно, вирусы с их способностью включаться в клеточный геном и покидать его были активными участниками процесса оптимизации генетического материала всех живых существ в ходе эволюции. Просто мы этого не заметили". Независимо от того, к какому миру - живому или неживому - мы будем относить вирусы, пришло время рассматривать их не изолированно, а с учетом постоянной связи с живыми организмами.

ОБ АВТОРЕ:
Луис Вилляреал
(Luis P. Villarreal) - директор Центра по изучению вирусов при Калифорнийском университете в г. Ирвайн. Получил степень кандидата биологических наук в Калифорнийском университете в Сан-Диего, затем работал в Стэнфордском университете в лаборатории лауреата Нобелевской премии Пола Берга. Активно занимается педагогической деятельностью, в настоящее время участвует в разработке программ по борьбе с угрозой биотерроризма.

Почти все, что тут было сказано, прямого отношения к делу не имет.
Вирус - это вобще не организм и уж, тем боле, не живой.
Живой организм - это сложная биологическая система которая способна к самовоспроизводству и подержанию собственной жизнедеятельности (дыханию, потреблению питательных веществ и т. д.) . Он может быть одноклеточным (например, бактерии) или многоклеточным. Вирус - это слепок из молекул ДНК или РНК и белков, который является всего лишь куском генетического кода, не проявляющим основных признаков жизнедеятельности.
Если привести аналогию из мира механизмов, то клетку можно представить как, например, ксерокс (а это механизм) , а вирус, это лист бумаги с текстом (это уже не механизм) . Так вот, лист бумаги, попадая в ксерокс приводит к тому, что ксерокс начинает выдавать копии этого листа с текстом, и будет это делать до тех пор, пока либо этот лист не достанут из ксерокса, либо пока ксерокс не навернется.
Примерно те же отношения возникают между клеткой (живой системой) и вирусом (неживым объектом) .

3 годов назад от Роман Сапрыга

Если выразить своё согласие или несогласие на Вашу аналогию с роботом, то вполне подходяще сравнение. Немного теории: вирус от лат. «virus» - яд

Подавляюще большинство ныне живущих на Земле организмов состоит из клеток, и лишь вирусы не имеют клеточного строения.

По этому важнейшему признаку все живое в настояще время делится учеными на две империи:
- доклеточные (вирусы и фаги) ,
- клеточные (все остальные организмы: бактерии и близкие к ним группы, грибы, зеленые растения, животные и человек) .

Вирион (или вирусная частица) состоит из одной или нескольких молекул ДНК или РНК, заключенных в белковую оболочку (капсид) , иногда содержащую также липидные и углеводные компоненты.

Диаметр вирусных частиц (их называют также вирионами) равен 20-300 нм. Т. е. они намного меньше, чем мельчайшие из прокариотических клеток. Так как размеры белков и некоторых аминокислот находятся в диапазоне 2-50 нм, то вирусную частицу можно было бы считать просто комплексом макромолекул. Вследствие их малых размеров и неспособности к самовоспроизведению вирусы часто относят к разряду «неживого».

Говорят: «Вирус – это промежуточная форма жизни, или нежизни», т. к. вне клетки хозяина он превращается в кристалл.

Есть мнение что вирус это переход от химии к живому.

Важнейшими отличительными особенностями вирусов являются следующие:

2. Не обладают собственным обменом веществ, имеют очень ограниченное число ферментов. Для размножения используют обмен веществ клетки-хозяина, е ферменты и энергию.

3 годов назад от александр жмурко

Вирусы открыты Д.И.Ивановским (1892 г., вирус табачной мозаики).

Если вирусы выделить в чистом виде, то они существуют в форме кристаллов (у них нет собственного обмена веществ, размножения и других свойств живого). Из-за этого многие ученые считают вирусы промежуточной стадией между живыми и неживыми объектами.


Вирусы - это неклеточная форма жизни. Вирусные частицы (вирионы) - это не клетки:

  • вирусы гораздо меньше клеток;
  • вирусы гораздо проще клеток по строению - состоят только из нуклеиновой кислоты и белковой оболочки, состоящей из множества одинаковых молекул белка.
  • вирусы содержат либо ДНК, либо РНК.

Синтез компонентов вируса:

  • В нуклеиновой кислоте вируса содержится информация о вирусных белках. Клетка делает эти белки сама, на своих рибосомах.
  • Нуклеиновую кислоту вируса клетка размножает сама, с помощью своих ферментов.
  • Затем происходит самосборка вирусных частиц.

Значение вирусов:

  • вызывают инфекционные заболевания (грипп, герпес, СПИД и т.д.)
  • некоторые вирусы могут встраивать свою ДНК в хромосомы клетки-хозяина, вызывая мутации.

СПИД

Вирус СПИДа очень нестоек, на воздухе легко разрушается. Заразиться им можно только при половых контактах без презерватива и при переливании зараженной крови.

Ответ


Установите соответствие между признаками биологического объекта и объектом, к которому относится данный признак: 1) бактериофаг, 2) кишечная палочка. Запишите цифры 1 и 2 в правильном порядке.
А) состоит из нуклеиновой кислоты и капсида
Б) клеточная стенка из муреина
В) вне организма находится в виде кристаллов
Г) может находиться в симбиозе с человеком
Д) имеет рибосомы
Е) имеет хвостовой канал

Ответ


Выберите один, наиболее правильный вариант. Доклеточные формы жизни изучает наука
1) вирусология
2) микология
3) бактериология
4) гистология

Ответ


Выберите один, наиболее правильный вариант. Вирус СПИДа поражает в крови человека
1) эритроциты
2) тромбоциты
3) лимфоциты
4) кровяные пластинки

Ответ


Ответ


Выберите один, наиболее правильный вариант. Клетки каких организмов поражаются бактериофагом?
1) лишайников
2) грибов
3) прокариот
4) простейших

Ответ


Выберите один, наиболее правильный вариант. Вирус иммунодефицита поражает в первую очередь
1) эритроциты
2) тромбоциты
3) фагоциты
4) лимфоциты

Ответ


Выберите один, наиболее правильный вариант. В какой среде вирус СПИДа, как правило, погибает
1) в лимфе
2) в грудном молоке
3) в слюне
4) на воздухе

Ответ


Выберите один, наиболее правильный вариант. Вирусы обладают такими признаками живого, как
1) питание
2) рост
3) обмен веществ
4) наследственность

Ответ


Ответ


1. Установите правильную последовательность стадий размножения ДНК-содержащих вирусов. Запишите в таблицу соответствующую последовательность цифр.
1) выход вируса в окружающую среду
2) синтез белка вируса в клетке
3) внедрение ДНК в клетку
4) синтез ДНК вируса в клетке
5) прикрепление вируса к клетке

Ответ


2. Установите последовательность этапов жизненного цикла бактериофага. Запишите соответствующую последовательность цифр.
1) биосинтез ДНК и белков бактериофага бактериальной клеткой
2) разрыв оболочки бактерии, выход бактериофагов и заражение новых бактериальных клеток
3) проникновение ДНК бактериофага в клетку и встраивание его в кольцевую ДНК бактерии
4) прикрепление бактериофага к оболочке бактериальной клетки
5) сборка новых бактериофагов

Ответ


Ответ



1) имеют неоформленное ядро
2) размножаются только в других клетках
3) не имеют мембранных органоидов
4) осуществляют хемосинтез
5) способны кристаллизоваться
6) образованы белковой оболочкой и нуклеиновой кислотой

Ответ


Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Вирусы, в отличие от бактерий
1) имеют клеточное строение
2) имеют неоформленное ядро
3) образованы белковой оболочкой и нуклеиновой кислотой
4) относятся к свободноживущим формам
5) размножаются только в других клетках
6) являются неклеточной формой жизни

Ответ


1. Установите соответствие между признаком организма и группой, для которой он характерен: 1) прокариоты, 2) вирусы.
А) клеточное строение тела
Б) наличие собственного обмена веществ
В) встраивание собственной ДНК в ДНК клетки хозяина
Г) состоит из нуклеиновой кислоты и белковой оболочки
Д) размножение делением надвое
Е) способность к обратной транскрипции

Ответ


Ответ


Ответ


Ответ


Ответ


Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Обмен веществ как свойство живого характерен для
1) вирусов растений
2) простейших
3) почвенных бактерий
4) вирусов животных
5) бактериофагов

Ответ


© Д.В.Поздняков, 2009-2019